2x^2+8x=136

Simple and best practice solution for 2x^2+8x=136 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+8x=136 equation:



2x^2+8x=136
We move all terms to the left:
2x^2+8x-(136)=0
a = 2; b = 8; c = -136;
Δ = b2-4ac
Δ = 82-4·2·(-136)
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-24\sqrt{2}}{2*2}=\frac{-8-24\sqrt{2}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+24\sqrt{2}}{2*2}=\frac{-8+24\sqrt{2}}{4} $

See similar equations:

| x×7=74 | | 4x=84+2x | | d×7=74 | | 2(7x-10)-4(3x-7)=5(4x-5 | | Y=-0.01x^2+0.975x+16,x0 | | 2(5x-4)+9=5x+46 | | 5(x)+10=-1+6(x) | | d-712=19 | | |x|=3x+8 | | V=9.8596×n-1 | | q^2=20 | | 3=2x/8 | | 6+4k=50 | | √2x+1=17 | | 7(x)-3=5(x)+15 | | 8t+2=7t-2 | | 12x-4x²=0 | | x*57=23 | | 9c+2=2c-47 | | x*23=57 | | 84x^2+84x=0 | | 23=3x+-8 | | 3/2b+(b+45)+90+(2b+90)+b=540 | | (4x+1)^2=64 | | 1.50b+(b+45)+90+(2b+90)+b=540 | | m=311,12 | | -36=-4.5c | | 5x+2+3x+5+8x+8+5x+10+4x+15=540 | | -15x=-720 | | 3x(x-3)=5x2-10x | | 6=1+5t-5t^2 | | 0.5x=0.2x-3 |

Equations solver categories